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The constant needs of the industry impel the engineering community in seeking of new

concepts and new strategies in order to improve the structural response of structures as

well as to enhance the endurance of materials. This is particularly true in the case of

rotating blades that are subjected to severe environmental conditions such as high

temperatures as well as mechanical conditions such as high rotating accelerations,

centrifugal forces, geometric stiffening, among others. It is well known that flexible

beams become stiffer when subjected to high speed rotations, because of the axial-

bending coupling associated to the large displacements of the beam cross-section. This

is called geometric stiffening effect and it was analyzed over the last decades in many

beam applications from blade problems to drill-string modeling. In this paper a rotating

nonlinear beam model accounting for arbitrary axial deformations is developed. The

beam is made of functionally graded materials (FGM). This model is also employed to

analyze other simplified models based on isotropic materials or composite materials,

that are particular cases of the present formulation. The assumption of steady-state

values of centrifugal loads is evaluated. It has to be said that there is a lack of

information about modeling of beams made of functionally graded materials and this

paper is intended to be a contribution on the subject.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Strategic and high technology industries, such as defense, aerospace or automotive industries are demanding new and
advanced materials in order to maintain or increase the leadership in the production of high competitive goods. Sometime
ago, designers claimed for materials that combine in a unified fashion, the good properties of the metals and ceramics, that
is, the stiffness, electrical conductivity and machinability of metals and the high strength, low density and high
temperature resistance of ceramics. During the past 10 or 12 years these kinds of advanced materials are becoming no
longer experimental specimens in laboratories but a well-developed reality. Functionally graded materials (FGM) are just
an example of such advanced materials. The variation in percentage of the material constituents can be arranged in such a
way to create a new material with graded properties in spatial directions. It is well known that one of the consequences of
an interface is the appearance of gradients, of temperature and stress, and that the use of functionally graded materials
precludes the appearance of this gradients.
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There are a number of papers dealing with general mechanics of beams, shells and plates made of functionally graded
materials. In the particular case of functionally graded beams the works of Sankar [1], Chakraborty et al. [2] and Kapuria
et al. [3], among others, offer interesting features, applications and calculation methodologies. These models are developed
by means of different constitutive hypotheses (graded metallic-ceramic, graded multilayered, etc.) and displacement
formulation (i.e. elementary Bernoulli–Euler or Timoshenko or higher order shear-deformable theories). The constitutive
modeling is commonly related to a classical rule of mixtures and the material properties may vary according to a power law
expression [2] or an exponential expression [1].

Rotating beams play an important role in the modeling of engineering applications such as turbine blades, airplane
propellers and robot manipulators among others. This subject has been investigated with different level of intensity, at
least, over the last four decades. Interesting reviews about rotating beams can be found in papers given by Rao [4] and
Chung and Yoo [5]. In these papers one can find many epoch-making and very recent investigations about rotating beams
made of isotropic metallic materials and even composite materials. Simo and Vu-Quoc [6,7] showed that the appropriate
consideration of nonlinear strain–displacement relationships plays an important role in the correct modeling of the
geometric stiffening of flexible beams. It is important to mention that the geometric stiffening has a remarkable effect in
the dynamics of rotating and non-rotating beams. Moreover in rotating beams the geometric stiffening is not only due to
certain strain–displacement expression but also due to centrifugal and Coriolis’ effects as well. Now, taking into account
the technological context, it is important to mention that there is a lack of information about rotating beams constructed
with functionally graded materials. Thus, to the best of the authors knowledge, the papers of Fazelzadeh et al. [8] and
Fazelzadeh and Hosseini [9] are the first ones dealing with rotating beams made of functionally graded materials. However,
in these formulations the geometrical stiffness was not taken into account. The interest of these papers was focused in the
thermoelastic effects related to graded properties.

In the following sections, a nonlinear model is developed appealing to a nonlinear strain–displacement relation. The
model is derived through a common variational principle. The model is based on a formulation that includes shear
deformation, that is a Timoshenko-like beam structure. The thermal effects are neglected at this stage because the main
interest of the paper is the study of the influence of the graded properties in the damping effects and geometric stiffening of
the rotating beam. The finite element method is employed to discretize the model and to obtain a numerical approximation
of the motion equations. The interpolation functions allow the integration of the element matrices in a consistent form.
Thus, the element can be used to calculate the response of a Bernoulli–Euler beam (as a limiting case) avoiding the shear
locking phenomenon. Comparisons between the nonlinear model and its linearization are carried out. Parametric studies
considering different slenderness ratios, different material constituents and motion patterns are performed as well.

2. Beam model formulation

In Fig. 1 one can see a sketch of a rotating beam undergoing arbitrary in-plane rotations, where O : xyz and O : XYZ are
the rotating and inertial frames, respectively. The rotation of the beam is characterized by means of a prescribed rotation
cðtÞ around the z-axis. The cross-section is rectangular and composed of a metallic core and ceramic surfaces as shown in
Fig. 2. The functionally graded beam is considered to be composed of isotropic homogeneous layers [10]. Then, graded
properties of the beam can vary according to the following expression:

PðzÞ ¼ Pm þ ðPc �PmÞ
2z

h

����
����n, (1)

where PðzÞ denotes a typical material property (i.e. density or Young’s modulus E or shear elastic modulus G, among
others), Pm and Pc intend for metallic and ceramic properties. The exponent n is a variable such that n � 0; its magnitude
gives the variation form of the properties as one can see in Fig. 2. It has to be mentioned that in the literature of structures
constructed with functionally graded materials, the most common specimen is ceramic-rich in one surface (at z ¼ h=2) and
metallic-rich at the parallel surface (at z ¼ �h=2). On the contrary, in this paper the beam has ceramic-rich properties at
both surfaces, protecting a metallic core as shown in Fig. 2.
Fig. 1. Reference frames of the rotating beam.
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Fig. 2. Examples of graded properties, PðzÞ.
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For a beam rotating around the z-axis, the position vector of a generic point ðp̄Þðpx;pyÞ may be written as

p̄ ¼
px

py

( )
¼

Cos½c� �Sin½c�
Sin½c� Cos½c�

" #
ux þ x

uy þ y

( )
, (2)

where ux and uy are the displacements of a generic point of the deformed configuration measured with respect to the
rotating frame:

uxðx; y; tÞ ¼ uðx; tÞ � yyðx; tÞ,

uyðx; y; tÞ ¼ vðx; tÞ. (3)

The variables u, v and y are the extensional displacement, lateral displacement and bending rotation of the cross-section,
respectively. As one can easily see, Eq. (3) is describing a typical shear-deformable or Timoshenko formulation.

Taking into account the definition of the Lagrangian strain tensor and Eq. (3), one can obtain the in-plane components of
the strain tensor as

�xx ¼ u0 � yy0 þ 1
2½ðu
0 � yy0Þ2 þ v02�,

gxy ¼ ðv
0 � yÞ þ ½�yðu0 � yy0Þ�. (4)

The velocity vector of a generic point can be obtained from (2) in the following form:

_̄p ¼
�½ðuþ x� yyÞ _cþ _v�Sin½c� � ½ðvþ yÞ _c� ð _u� y _yÞ�Cos½c�

�½ðvþ yÞ _c� ð _u� y _yÞ�Sin½c� þ ½ðuþ x� yyÞ _cþ _v�Cos½c�

( )
. (5)

In Eqs. (4), (5) and in the following paragraphs, dots and apostrophes identify derivatives with respect to time and space
(i.e. x), respectively.

Now the strain energy and the kinetic energy of a functionally graded rotating beam can be defined as

UD ¼
1

2

Z
V
½EðzÞ�2

xx þ kGðzÞg2
xy�dV ,

UK ¼
1

2

Z
V
½rðzÞ _̄p � _̄p�dV , (6)

where EðzÞ, GðzÞ and rðzÞ are Young’s modulus, shear modulus and density, respectively; whereas k is the Timoshenko shear
coefficient.

In this paper the shear coefficient is taken, as an approximation, equal to the isotropic case, i.e. k ¼ 5
6. Now, substituting

Eqs. (4) and (5) into Eq. (6), one obtains

UD ¼
1

2

Z
L
½JE

11u02 þ JE
22y
02
þ JG

11ðv
0 � yÞ2�dx

þ
1

2

Z
L
½JE

11ðu
03 þ u0v02Þ þ 3JE

22u0y02 � 2JG
11ðv

0 � yÞu0y�dx

þ
1

2

Z
L

JE
11

1

4
u04 þ

1

2
u02v02 þ

1

4
v04

� �
þ JE

22
3

2
u02 þ

1

2
v02

� �
y02

� �
dx

þ
1

2

Z
L

1

4
JE
33y
04
þ JG

11 u02y02
� �

þ JG
22 y2y02
� �� �

dx , (7)
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UK ¼
1

2

Z
L

J
r
11½

_u2
þ _v2

þ 2 _cð _vðuþ xÞ � _uvÞ�dxþ
1

2

Z
L

J
r
11½

_c
2
ðu2 þ v2 þ 2uxþ x2Þ�dx

þ
1

2

Z
L

J
r
22½

_y
2
þ 2 _y _cþ ð1þ y2

Þ _c
2
�dx, (8)

where

fJE
ij; J

G
ij ; J

r
ij
g ¼

Z
A
fEðzÞ; kGðzÞ;rðzÞgðḡi � ḡjÞdy dz; 8ḡ ¼ f1; y; y2g. (9)

The nonlinear equations of motion can be derived by means of Hamilton’s principle, i.e.:

d
Z t2

t1

ðUK � UDRÞdt ¼ 0, (10)

where UDR is the reduced strain energy derived from Eq. (7) in which the double underlined terms are assumed negligible
as in many papers of rotating beam made of isotropic materials [10]. This approach is also considered in the study
of geometric stiffening effect of non-rotating beams [11]. It is noticeable that the elimination of every underlined term in
Eq. (7), leads to a linear formulation.

3. Finite element approach

Finite element models can be constructed through discretization of the Hamilton principle expression (10). The
discretization is carried out using Lagrange linear shape functions for axial displacements, cubic shape functions for
the lateral displacement, and quadratic shape functions for bending rotation. That is:

u ¼ Nuqe,

v ¼ Nvqe,

y ¼ Nyqe, (11)

where

qe ¼ fu1;v1; y1;u2;v2;y2g
T ,

Nu ¼ f1� x;0;0;x;0;0g,

Nv ¼ 0;
1þ bð1� xÞ � 3x2

þ 2x3

1þ b
;
½2þ b� ð4þ bÞxþ 2x2

�xLe

2ð1þ bÞ
;0;

bxþ 3x2
� 2x3

1þ b
;
½�bþ ðb� 2Þxþ 2x2

�xLe

2ð1þ bÞ

( )
,

Ny ¼ 0;
6xðx� 1Þ

Leð1þ bÞ
;
½1þ b� ð4þ bÞxþ 3x2

�

1þ b
;0;�

6xðx� 1Þ

Leð1þ bÞ
;
ð�2þ bþ 3xÞx

1þ b

( )
, (12)

Le is the length of the generic element, x and b are such that

x ¼
x

Le
; b ¼

12JE
22

L2
e JG

11

. (13)

The interpolating functions summarized in Eq. (12) give a consistent integration of the equations of a shear-deformable
isotropic beam as one can see in Refs. [12,13]. Moreover Nv and Ny can also be employed to approximate the solution
of a Bernoulli–Euler beam equation because when b! 0 (or in other words JG

11 !1, i.e. the non-shear-deformable
hypothesis), and the interpolating functions reduce to cubic and quadratic Hermite’s polynomials.

Now, substituting Eq. (12) in Eq. (13) and then in Eqs. (7) and (8), after performing the conventional steps of variational
calculus in Eq. (10) one gets the equation for a single finite element in the following form:

Me €qe � 2 _cGe _qe þ ½Ke þ KgeðqeÞ �
_c

2
Me �

€cGe�qe ¼
_c

2
fA �

€cfT , (14)

where

Me ¼

Z 1

0
½J
r
11ðN

T
uNu þNT

vNvÞ þ J
r
22NT

yNy�Le dx, (15)

Ge ¼

Z 1

0
½J
r
11ðN

T
uNv � NT

vNuÞ�Le dx, (16)
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Ke ¼

Z 1

0
½JE

11N0u
T N0u þ JE

22N0y
T N0y�

1

Le
dxþ

Z 1

0
½JG

11ðN
0
v

T
� LeNT

yÞðN
0
v � LeNyÞ�

1

Le
dx, (17)

Kge ¼

Z 1

0

JE
11

2L2
e

½3N0u
T N0uqeN0u þ N0u

T N0vqeN0v�dxþ
Z 1

0

JE
11

2L2
e

½N0v
T N0uqeN0v þ N0v

T N0vqeN0u�dx

þ

Z 1

0

3JE
22

2L2
e

½N0u
T N0yqeN0y þ N0y

T N0uqeN0y þ N0y
T N0yqeN0u�dx

�

Z 1

0

JG
11

2Le
½N0u

T NyqeðN
0
v � LeNyÞ þN0u

T
ðN0v � LeNyÞqeNy�dx

�

Z 1

0

JG
11

2Le
½NT

yN0uqeðN
0
v � LeNyÞ þNT

yðN
0
v � LeNyÞqeN0u�dx

�

Z 1

0

JG
11

2Le
½ðN0v

T
� LeNT

y ÞNyqeN0u þ ðN
0
v

T
� LeNT

yÞN
0
uqeNy�dx, (18)

fA ¼

Z 1

0
½J
r
11NT

uLex�Le dx, (19)

fT ¼

Z 1

0
½J
r
11NT

vLexþ J
r
22NT

y �Le dx. (20)

After the assembling process one gets the following expression:

M €Q þ C _Q þ ½Kþ KGðQ Þ þ KD�Q ¼ F, (21)

where M is the global mass matrix, C is the global gyroscopic matrix, K is the global elastic stiffness matrix, KG is the global
geometric stiffness matrix, KD corresponds to the stiffness induced by the rotation of the beam and F is the global vector of
dynamical forces. One may notice that KD is not symmetric due to the presence of the term proportional to the rotating
acceleration €c.

The matrix C can be modified in order to account for ‘‘a posteriori’’ structural damping, i.e.:

C ¼ Gþ CRD. (22)

The matrix G is the global gyroscopic matrix and the matrix CRD corresponds to the system proportional Rayleigh damping
given by

CRD ¼ aMþ ZK. (23)

The coefficients a and Z in Eq. (23) can be computed from two experimental modal damping coefficients (namely, x1 and
x2) for the first and second frequencies according to the common methodology presented bibliography related to finite
element procedures [14] and vibration analysis [15]. Remember that M is the global mass matrix and K is the global elastic
stiffness matrix. The Matlab odesuite is employed to simulate numerically the finite element model, for this reason Eq. (21)
is represented in the following form:

A
dW

dt
þ BW ¼ D, (24)

where

A ¼
C M

M 0

� �
; B ¼

Kþ KGðQ Þ þ KD 0

0 �M

� �
, (25)

W ¼ Q ;
dQ

dt

	 
T

; D ¼
F

0

	 

. (26)

4. Numerical studies

In the present section a numerical testing of the procedure as well as parametric studies are performed in order to
establish the validity and usefulness of the finite element approach. The first examples consist of comparisons of the finite
element procedure with previous models that are contained in the present theory as limit cases. From Eq. (1) one can easily
see that in the case of a homogeneous isotropic material, Pm ¼ Pc , then there is no variation of properties. Thus, in Table 1
one can see the first three natural frequencies of a very slender metallic beam. The analytical solution of a classic model and
experimental data [16] are compared with the present finite element approach. The beam is constructed with steel (see
Table 2 for material properties) and its geometrical properties are such that h ¼ 22:12 mm, b ¼ 2:66 mm, L ¼ 152:40 mm.
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Table 1
Comparison of natural frequencies of a metallic cantilever beam (Hz).

Present approach Ref. [16] Ref. [16]

FEM Analytical Experimental

97.0 96.9 97.0

607.5 607.6 610.0

1697.0 1699.0 1693.0

Table 2
Properties of metallic and ceramic materials.

Properties of materials Steel Aluminium Alumina (Al2O3)

Young’s modulus E [GPa] 214.00 79.80 390.00

Shear modulus G [GPa] 82.20 49.70 137.00

Material density r [kg=m3] 7800.00 2690.00 3200.00

Fig. 3. Comparison of the present theory with previous approaches. Dotted line: present linear approach; continuous line: present nonlinear approach;

(’) linear model [10]; (E) nonlinear model [10].
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The beam does not rotate and it is clamped at x ¼ 0 and free at x ¼ L. The frequencies have been calculated with a model of
10 finite elements that gave percentage differences lower that 0:5 percent with the analytical and experimental
counterparts.

The second example is a comparison of present rotating beam model with the model developed by Trindade and
Sampaio [10]. These authors developed a model for a metallic rotating beam under the context of Bernoulli–Euler
hypotheses. As it is mentioned above the present shear-deformable model can be reduced to the case of a Bernoulli–Euler
metallic beam by neglecting the terms associated with shear deformations (this may be done through the finite element
procedure, i.e. Eq. (12) with b ¼ 0) and imposing the condition Pm ¼ Pc in Eq. (1). The rotating beam is made of
aluminium (see Table 2 for properties) and the geometrical properties are such that h ¼ 25 mm, b ¼ 4 mm and L ¼ 400 mm.
The damping properties are such that the damping coefficient for the first and second frequencies were taken as x1 ¼ 0:01
and x2 ¼ 0:01 (see Ref. [14] for the methodology). The beam rotates with the following rule given in Eq. (27).
Five finite elements were employed to integrate numerically (by means of Matlab function ‘‘ode15s’’) the equations
of motion:

_cðtÞ ¼
50t; 8t 2 ½0;1Þ;

50ð2� tÞ; 8t 2 ½1;2�;

0; 8t42:

8><
>: (27)
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In Fig. 3 the axial displacements calculated for both linear and nonlinear approaches are shown. The responses of the
present model and the beam developed in Ref. [10] are compared as well. One can see a good correlation (it has to be
mentioned that the data for comparison purposes were taken from a figure).

The third example corresponds to an analysis of the variation of natural frequencies of a non-rotating functionally
graded cantilever beam with respect to the exponent n of Eq. (1). The beam has a length L ¼ 1 m and a cross-section with
dimensions b ¼ 0:02 m and h ¼ 0:01 m. The metallic constituent is steel and the ceramic constituent is alumina, Al2O3,
whose properties are summarized in Table 2. In Fig. 4, one can see the variation of the first three natural frequencies of a
functionally graded beam with respect to the exponent n. Notice that the three frequencies vary monotonically from the
highest value corresponding to the case in which the beam is made of ceramic material (i.e. n ¼ 0) to the case in which
the beam is made of steel (i.e. n!1). Note that according to Eq. (1), when n ¼ 8 the metallic constituent occupies nearly
90 percent of the beam volume. In this calculation, models with 10 finite elements were employed.

The last example corresponds to a functionally graded beam that rotates with the rule defined in Eq. (27).
The geometrical properties of the beam are: L ¼ 1 m, b ¼ 0:02 m and h ¼ 0:01 m. The material properties vary from a steel
core to ceramic surfaces of alumina; see Table 2 for material properties. For simulation purposes the damping coefficients
are assumed to be x1 ¼ 0:002 and x2 ¼ 0:002. Figs. 5 and 6 show the lateral deflection of the beam tip during a 3 s period
for beams having n ¼ 0:4 and 2:0, respectively, or in other words a beam rich in ceramic constituent (n ¼ 0:4) and a beam
rich in steel constituent (n ¼ 2:0). The linear and nonlinear models derived from the present formulation are compared.

The dynamic behavior can be divided into three parts according to Eq. (27). Thus the instantaneous acceleration
(at t ¼ 0 s) and counter-acceleration (at t ¼ 1 s) of the base leads to transient lateral vibrations which are slightly damped
after a period of 0.4 s from the change of motion. For a ceramic-rich beam, during the positive and negative acceleration
processes the linear and nonlinear models, in appearance, have the same deflections as one can see in Fig. 5. However, the
Fig. 4. Variation of the natural frequencies (f in [Hz]) of a functionally graded beam. (&) first frequency, (’) second frequency, (m) third frequency.

Fig. 5. Lateral displacement for a beam rich in ceramic constituent, dotted line for linear approach and continuous line for nonlinear approach.
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Fig. 6. Lateral displacement for a beam rich in metallic constituent, dotted line for linear approach and continuous line for nonlinear approach.

Fig. 7. Axial displacement for a beam rich in ceramic constituent, dotted line for linear approach and continuous line for nonlinear approach.

M.T. Piovan, R. Sampaio / Journal of Sound and Vibration 327 (2009) 134–143 141
error in percentage (not shown in this paper due to space limitations) of the linear model with respect to the nonlinear
model oscillates between 0:1 percent and 5 percent. On the other hand, for a metallic-rich beam, the same behavior of the
ceramic-rich beam can be seen in Fig. 6; however, the error in percentage of the linear model with respect to the nonlinear
model oscillates between 0:5 percent and 7 percent.

The differences between a linear and nonlinear formulation, and the influence of the geometrical stiffening can be
exemplified in a more evident form by analyzing the dynamic behavior of the axial displacement. Since in the linear
approach there is no elastic coupling between the lateral and axial displacement, the axial displacement is not influenced
by the transient motion of the lateral displacement. This behavior can be seen in both Figs. 7 and 8. On the contrary the
nonlinear approach has a coupling between lateral and axial displacements. Thus, the presence of a transient lateral motion
induces by means of the geometrical coupling an axial displacement as one can see in the behavior of the nonlinear model
in Figs. 7 and 8. The material properties as well as the type of formulation (linear or nonlinear) play an important role in the
dynamics of functionally graded beams. This affirmation may be exemplified in Figs. 7 and 8. That is, the linear approach
has no transient oscillatory motion, but the nonlinear approach has oscillatory motion. The intensity of this oscillatory
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Fig. 8. Axial displacement for a beam rich in metallic constituent, dotted line for linear approach and continuous line for nonlinear approach.

Fig. 9. Variation of the ratio L between transient peaks, (m) for n ¼ 2:0, (’) for n ¼ 1:5, (&) for n ¼ 0:8, (n) for n ¼ 0:4.
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motion, especially the peaks around t ¼ 1 s, is related to the type of material properties. Thus, observing Figs. 7 and 8, it
may be concluded that the aforementioned feature is connected with the presence of a higher content of metallic
constituent in the beam. Note that in the case of the ceramic-rich beam (n ¼ 0:4) the ratio between the indicated peaks is
about 1:18 but in the case of a metallic-rich beam (n ¼ 2:0) the ratio between the indicated peaks is of 1:43. In Fig. 9 one
can see the variation of the aforementioned ratio between peaks (L) with respect to the damping coefficients xi, which are
assumed equal for comparative purposes among different types of metallic–ceramic ratios.

Taking into account that the axial stresses are related to the values of displacements through the constitutive equations,
important changes in the forcing magnitude or sudden changes in the axial displacements would affect the stress patterns
that may lead to undesired high stress levels, and eventually to a structural failure. A deeper analysis of this matter
deserves a future work.
5. Conclusions

In this paper a new model to study the dynamic behavior of rotating beams made of functionally graded materials has
been introduced. The model has been deduced employing a formulation accounting for shear-deformability and nonlinear
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strain–displacements relationships. This conception makes possible the modeling of the geometric stiffening effect.
The Coriolis inertial effect has been taken into account as well. The present model reproduces the results of other
approaches based on Bernoulli–Euler assumptions and for isotropic materials. Certain features in the dynamics of rotating
functionally graded beams have been evaluated through a couple of examples with a prescribed rule of rotation. In these
tasks, the nonlinear approach and a derived linear approach have been compared. The ratio between constituents plays an
important role in the dynamic behavior of the functionally graded beam. This is especially true if a certain beam is
composed mainly of a metallic constituent, where in the case of rotating rules with sudden changes of acceleration, the
axial displacement, for example, suffers a highly oscillatory behavior that may lead to a serious oscillatory pattern of axial
stresses. However, this subject deserves a future and deeper research.
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